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ABSTRACT 
 
To monitor the position of athletes during sporting contests it is proposed to equip the athletes with 
small radio transmitters whose signal is received by several directional radio antennae located at 
known locations.  This paper provides a method of determining the athletes horizontal position as 
well as the precision of position given the precision of the directional measurements.  In addition an 
analysis of precision of position fixing for different antennae locations is provided 
 
 
INTRODUCTION 
 
Suppose an athlete, equipped with a small radio transmitter, is located within the range of several 
directional radio antennae.  The antennae can detect the transmitted signal and determine the 
bearing of the line between the antennae and the athlete.  Figure 1 shows an athlete at P and four 
directional antennae at positions A, B, C and D whose East and North coordinates E,N are known.  
The bearings (clockwise angles from North) , ,A B Cφ φ φ  and Dφ  of the lines from the antennae to 
athlete are shown. 
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Figure 1.  Athlete at P and bearings from antennae locations A, B, C and D 
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The E,N coordinates of the athlete at P can be determined from any two bearings from the 
directional antennae locations.  A formula for computing the coordinates of P from two bearings 
can be obtained from coordinate geometry and is set out in a following section.  If three or more 
bearings from antennae to athlete are observed then the determination of the athletes position is 
more complicated.  This paper details a method, using the least squares technique, that provides the 
"best estimate" of the athletes position using all the observed bearings in a series of simultaneous 
linear equations.  In addition, it will also be shown that a least squares solution provides estimates 
of the precision of the computed position and that this precision estimate is a function of (i) the 
number of antennae, (ii) the location of the antennae, (iii) the precision of the measured bearings 
and (iv) the position of the athlete. 
 
 
POSITION OF ATHLETE FROM TWO OBSERVED BEARINGS 
 
From Figure 1, using the bearings ,A Bφ φ  to the athlete at P from antennae A and B at locations 

 and  the following two equations can be obtained ,AE N A B,BE N
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Expanding these equations and re-arranging gives 

 
tan tan
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= − +
= − +
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Equating equations (2) gives a solution for PN  

 tan tan
tan tan

A A B B B A
P

A B

N N EN Eφ φ
φ φ

− + −
=

−
 (3) 

Having obtained a solution for PN  from (3) then PE  can be obtained from either of equations (2). 
 
It should be noted that if P lies on the line between A and B then its position is indeterminate. 
 
 
LEAST SQUARES POSITION OF ATHLETE FROM THREE OR MORE OBSERVED 
BEARINGS 
 
Using equations (2) and (3) the coordinates of an athlete at P can be determined from pairs of 
observed bearings, ie from four bearings there would be six possible solutions for the coordinates of 
P. 

For n bearings taken in pairs , there will be ( 2m = )
)(

!
! !

n n
m m n m
⎛ ⎞

=⎜ ⎟ −⎝ ⎠
 possible solutions. 

A crude solution for the athlete's position is to take an average of all possible solutions, but this 
method will not give the "best estimate" nor will it provide any information on the precision of the 
computed solution.   
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A better approach is to use the principle of least squares.  A least squares solution depends upon the 
formation of a set of observation equations and their solution. 

 (1tan , , ,P k
k k k k P P

P k

E Ev f E N
N N

φ − ⎛ ⎞−
+ = =⎜ ⎟−⎝ ⎠

)E N  (4) 

where kφ  are observed bearings from the antennae locations k to the athlete at P, 
  are residuals (small corrections) associated with observed bearings, kv
 ,  are east and north coordinates of the antennae locations and kE Nk

 ,P PE N  are east and north coordinates of the athlete. 
 
Equation (4) expresses the fact that every observed bearing has a small, unknown correction 
(residual), which if added to the observation would yield the "true" bearing.  The true bearing is a 
function of the known coordinates of the antennae and the unknown coordinates of the athlete.  An 
observation equation can be written for each observed bearing and this set of equations can be 
solved by enforcing the least squares principle.  This principle states that the best estimate of the 
coordinates is that which makes the sum of the squares of the residuals, multiplied by coefficients 
expressing the precision of the observations, a minimum. This technique first employed by the 
German mathematician C.F. Gauss in 1795, is used extensively in surveying applications. 
 
The normal techniques of solution of systems of equations require that the sets of observation 
equations must be linear, ie, "unknowns" linearly related to measurements.  This is not the case in 
this problem where the observed bearings kφ  (the measurements) are non-linear functions of the 
coordinate differences.  In equation (4), the measurements kφ  are non-linear functions of the 
unknowns ,P PE N  and any system of equations based on (4) would be non-linear and could not be 
solved by normal means.  Equation (4) can be linearized and the most common method is to use 
Taylor's theorem to represent the function as a power series with zero order terms, 1st order terms, 
and higher order terms.  By choosing suitable approximations, the higher-order terms can be 
neglected, yielding a linear approximation to the function.  This linear approximation of the 
mathematical model can be used to form a set of linear equations, which can be solved by normal 
means. 
 
Taylor's theorem can be used to expand a non-linear function into a linear series.  Consider a 
function of a single variable x, Taylor's theorem gives a convergent power series for ( )f x  about 
the point  x a=

( ) ( ) ( )
( )

( )
2 3 1

1( ) ( ) ( ) ( ) ( ) ( ) ( )
2! 3! 1 !

n
n

n

x a x a x a
f x f a x a f a f a f a f a R

n

−
−− − −

′ ′′ ′′′= + − + + + + +
−

(5) 

where nR  is the remainder after n terms and lim 0nn
R

→∞
=  for ( )f x  about  x a=

  are derivatives of the function( ) , ( ) , etcf a f a′ ′′ ( )f x  evaluated at . x a=
 
Suppose that the athlete's position ,P PE N  is given by P P PE E E′= + ∆  and P PN N N′= + ∆ P  where 

,P PE N′ ′  are approximate coordinates and ,P PE N∆ ∆  are small corrections.  Taylor's theorem can be 
used to linearize equation (4) to give 

( ) ( ) ( ) ( )
2 2

2 2
2 2

k k k
k k k P P P P P P P P

P P P

v E E N N E E N N
E N E N
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∂ ∂ ∂ ∂
k

P
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kφ′  is the bearing to the athlete computed using the approximate coordinates of the athlete's position 

and ,k

P P

k

E N
φ φ∂ ∂

∂ ∂
 are partial derivatives of the function evaluated using the approximate coordinates. 

In equation (6) the terms in parentheses are corrections P PE E EP′∆ = −  and P PN N NP′∆ = − .  If the 
approximate coordinates are close to the actual coordinates then the corrections will be small and 
powers of these corrections will be exceedingly small and may be neglected in a linear 
approximation of the form 

 k
k k k P P

P P

v E N k

E N
φ φφ φ ∂ ∂′+ = + ∆ + ∆

∂ ∂
 (7) 

The partial derivatives in equation (7) are evaluated in the following manner. 

Using the relationships: 1
2 2

1tan       and      
1

du dvv ud du d u dx dxu
dx u dx dx v v

−
−⎛ ⎞= =⎜ ⎟+ ⎝ ⎠
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Substituting equations (8) into (7) and re-arranging gives a linearized observation equation 

 k k P k P kv b E a N φ φ′− ∆ − ∆ = −  (9) 

For n observed bearings, the equations in the u unknowns can be written in matrix form as 

 

1 1 1 1

2 2 2 2

3 3 3 3
P

P

n n n n

v b a
v b a

E
v b a

N

v b a

1

2

3

n

φ φ
φ φ
φ φ

φ φ

′− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′− − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥∆⎡ ⎤ ′+ − − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥∆⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (10a) 

or + =v Bx f  (10b) 

where n is the number of equations, 
 u is the number of unknowns (the corrections to the approximate coordinates), 
 v is an (  vector of residuals, ),1n

 B is an  coefficient matrix containing the coefficients a and b, ( ,n u)
) x is a (  vector of corrections to approximate coordinates and ,1u
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 f is an (  vector of numeric terms (computed bearing minus observed ),1n
  bearing). 
 
Each observed bearing has an associated estimate of precision.  Precisions are usually expressed as 
variances 2

φσ  or standard deviations φσ  (the positive square root of the variance) and estimates of 

these quantities are denoted by 2sφ  and sφ .  In least squares solutions the measurements are assumed 
to be random variables and their statistical connection, the covariance denoted by jkσ  and estimated 
by jks , must be considered.  In most practical applications the measurements are treated as 
independent and hence their covariances are zero.  For a set of n measurements, the variance matrix 

 (containing variances and covariances) is estimated by the cofactor matrix Q (containing 
estimates of the variances and covariances).  Variance matrices and cofactor matrices are related by 
Σ

  (11) 

2
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n
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⎥
⎥⎦

where 2
0σ  is the variance factor.  In many least squares applications, it is usual to express the 

precision of measurements in terms of weights where a weight w is defined as being inversely 
proportional to an estimate of variance ; measurements of high weight having low precision.  A 
weight matrix W is defined as the inverse of the cofactor matrix Q 

2s

 1−=W Q  (12) 

The system of equations (10), n equations in u unknowns n , is solved by employing the least 
squares principle, ie a solution for the corrections 

u>
,P PE N∆ ∆  is determined such that the sum of the 

squares of the residuals (multiplied by precision coefficients) is a minimum. This principle may be 
expressed mathematically as the minimisation of a function ϕ  where 

  (13) ( ) (TTϕ = = − −v Wv f Bx W f Bx)

Differentiating ϕ  with respect to the unknowns x and equating the derivatives to zero leads to a set 
of normal equations 

  (14a) ( )T =B WB x B WfT

or 

 =Nx t  (14b) 

The solution for the unknowns x (corrections ,P PE N∆ ∆ ) is given by 

 ( ) 1

1

T T−

−

=

=

x B WB B Wf

N t
 (15) 

The vector x contains corrections to approximate positions ,P PE N′ ′  based on a linearized 
approximation of the observation equation (4).  The smaller the corrections, the closer the linearized 
equation approximates the non-linear equation.  Thus, the correct solution is obtained by iteration. 
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EXAMPLE COMPUTATION OF ATHLETE'S POSITION 
 
From Figure 1 the coordinates of the four antennae locations and the bearings to the athlete are 

 

Point East North
6.00 79.06

72.50 81.03
90.42 28.29
18.36 16.15

A
B
C
D

 

Point Bearing Estimated st.dev. 
132 30 0 10
236 20 0 10
294 00 0 10
20 40 0 10

A

B

C

C

sφ
φ
φ
φ
φ

′ ′
′ ′
′ ′
′ ′

 

Using equations (2) and (3) and the bearings Aφ  and Bφ  the approximate position of the athlete is 

 tan tan 54.551
tan tan

A A B B B A
P

A B

N N E EN φ φ
φ φ

− + −
= =

−
 

 tan tan 32.747P A P A A AE N N Eφ φ= − + =  

Using the approximate position of the athlete, the computed bearings φ′  and distances s' are 

 

Point Computed Bearing Computed Distance
132 30 00 36.278
236 19 58 47.765
294 28 55 63.371
20 32 19 41.008

A

B

C

C

φ
φ
φ
φ

′ ′′
′ ′′
′ ′′
′ ′′

 

The set of observation equations in the form of (10) are given below.  Note that the elements of the 
coefficient matrix B are in units of sec/cm, the corrections ,P PE N∆ ∆  are in cm's and the numeric 
terms f are in seconds. 

 

1

2

3

4

38.4118 41.9192 0
23.9394 35.9402 2
13.4884 29.6224 1735
47.1015 17.6467 461

P

P

v
v E
v N
v

′′⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥

⎡ ⎤
⎢ ⎥′′∆− −⎡ ⎤⎢ ⎥ ⎢ ⎥+ ⎢ ⎥ ⎢ ⎥=

′′∆⎢ ⎥ − −⎢ ⎥ ⎣ ⎦
⎢ ⎥ ⎢ ⎥

⎢ ⎥
⎢ ⎥′′− −⎣ ⎦⎣ ⎦ ⎣ ⎦

 (16) 

Using (15), the solution for x is 

 
0.6164

14.0767
P

P

E
N

∆⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥∆ −⎣ ⎦⎣ ⎦

x  

The corrections (cm's) applied to the approximate coordinates give improved estimates  
 and 32.747 0.006 32.753P P PE E E′= + ∆ = + = 54.551 0.141 54.410P P PN N N′= + ∆ = − = . 

Using these values as approximate coordinates in another iteration gives corrections less than 0.5 
mm so for all practical purposes the results from the first iteration can be regards as exact. 
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PRECISION OF COMPUTED ATHLETE POSITION 
 
A very useful property of a least squares solution is that estimates of the precision of the computed 
quantities x is contained in the inverse of the coefficient matrix N of the normal equations (14).  
That is 

 1
xx

−=Q N  (16a) 

In our case of intersecting bearings defining the athletes position ,P PE N  

 
2

1
2

E EN

EN N

s s
s s

−⎡ ⎤
=⎢ ⎥

⎣ ⎦
N  (16b) 

This property can be established by using the Law of Propagation of Variances, or the Law of 
Propagation of Cofactors since cofactor matrices are estimates of variance matrices.  This law states 
that if random variables x and y are related by 

 = +y Ax b  (17) 

where A is a coefficient matrix and b is a vector of numeric terms (or constants) then the cofactor 
matrix  is given by yyQ

  (18) T
yy xx=Q AQ A

The sequence of equations in a least squares solution may be summarised as 

 

1

T

T

−

= −

=

=

=

f d l
N B WB
t B Wf
x N t

 (19) 

The first equation is the numeric terms f equal to computed bearings d minus observed bearings l.  
This equation can be re-cast as 

 ( )= − +f I l d

Q

 

where I is the identity matrix and the terms in parentheses represents the coefficient matrix A in 
equation (17).  Applying the Law of Propagation of Variances gives 

  (20) ( ) ( )T
ff ll ll= − − = =Q I Q I Q

llQ  is the cofactor matrix of the observations l and the subscript "ll" is dropped from  and  
in these notes. 

llQ llW

 
The third equation of (19) can be written as 

 ( )T=t B W f  

Noting that  and  (since W and Q are symmetric) and using (20) the propagation 
law gives 

1−=W Q T =W W
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( ) ( )TT T
tt ff

T T

T

=

=

=
=

Q B W Q B W

B WQW B
B WB
N

 (21) 

The last equation of (19) can be written as 

 ( )1−=x N t  

Noting that N and  are symmetric and using (21), the propagation law gives the proof of (16a) 1−N

 

( ) ( )1 1

1 1

1

T

xx tt
− −

− −

−

=

=

=

Q N Q N

N NN
N

 

In the computation example above, the inverse of the normal equation coefficient matrix is 

 
2

1
2

81.3530 6.1080
6.1080 85.4081

E EN
xx

EN N

s s
s s

− −⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

N Q  

and the estimates of variance and standard deviation of position are 

  
2 2

2 2

81.3530 cm   and  0.090 m

85.4081 cm   and  0.092 m
E E

N N

s s

s s

= =

= =

 
 
ERROR ELLIPSES 
 
Error ellipses are a graphical representation of the precision of the computed coordinates.  They can 
be used to gauge the "strength" of the position fix; circular ellipses indicate a strong position fix and 
elongated ellipses indicate a weak position fix. 
 
Mikhail (1976, pp.30-31) gives the equations for the lengths of the semi-axes a and b of the error 
ellipse as 

 ( ) ( )2 22 2 2 2 21 2
2 E N E N ENa s s s s s⎛= + + − +⎜
⎝ ⎠

⎞
⎟  (22a) 

 ( ) ( )2 22 2 2 2 21 2
2 E N E N ENb s s s s s⎛= + − − +⎜
⎝ ⎠

⎞
⎟  (22b) 

and the angle θ  between east axis and the major axis of the error ellipse as 

 2 2

2tan 2 EN

E N

s
s s

θ =
−

 (23) 

The correct quadrant of 2θ  is determined from the signs of the numerator and denominator in 
equation (23) and θ  is measured positive anticlockwise from the east axis. 
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For the example above the parameters of the error ellipse are 

 
9.46 cm
8.79 cm
125.8 degrees

a
b
θ

=
=
=
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Figure 2.  Athlete at P and error ellipse indicating precision of fix 
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ANOTHER EXAMPLE 
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Figure 3.  Athlete at P and bearings from antennae locations A, B, C and D. 
 
To demonstrate the properties of the error ellipse consider Figure 3 which shows an athlete at P and 
the four antennae locations A, B, C and D.  The antennae are all to the left of the athlete and not as 
well spread as in the first example.  The data for the observed bearings and the antennae locations 
are 

 

Point East North
6.00 79.06

16.00 50.50
4.50 29.50

18.36 16.15

A
B
C
D

 

Point Bearing Estimated st.dev. 
103 30 0 10
82 30 0 10
69 40 0 10
57 00 0 10

A

B

C

C

sφ
φ
φ
φ
φ

′ ′
′ ′
′ ′
′ ′

 

A solution as per the previous example gives the parameters of the error ellipse as 

 
34.95 cm
24.74 cm
11.7 degrees

a
b
θ

=
=
=
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Figure 4. Athlete at P and error ellipse indicating precision of fix. 
 
The size, shape and orientation of the error ellipse is a visual indication of the precision of the 
athlete's computed position.  Comparing Figures 2 and 4 shows the relative precisions of the two 
solutions; the second example much worse than the first. 
 
 
PLAYER ON A SOCCER FIELD 
 
Suppose there are four radio direction antennae located near the corners of a soccer field 110 metres 
by 73 metres.  The antennae are located at offsets of 10 metres from the corners of the field.  The 
player, with a radio transmitter on their body, moves about the field and their position and the 
precision of the position fix can be determined from the four bearings using least squares.  The 
parameters of an error ellipse can be computed and the size, shape and orientation of the ellipse 
indicate the precision of location of the athlete.  For example, in Figure 5, locations at the corners 
are less precise than locations near the centre.  Near circular ellipses indicate good precision of 
location and narrow elongated ellipses indicate poor precision. 
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 Figure 5.  Error ellipses at random locations of a player on a soccer field. 
 Standard deviation of bearings 1°.  Antennae at A,B,C and D.. 
 
For a particular arrangement of antennae, error ellipses will have certain size, shape and orientation 
at different locations on the field.  These ellipse characteristics may be used to compare different 
arrangements of antennae and different numbers of antennae.  Two properties of error ellipses may 
be useful in this comparison. 

The flattening f a bf
a
−

=  (24) 

 a and b are the semi-major and semi-minor axes of the ellipse respectively.  The flattening 
is the ratio of the difference in semi-axes lengths to the semi-major axis and varies between 
0 (a circle) and 1 (a straight line).  A near circular ellipse (indicating a good location fix) 
will have a small flattening and a narrow elongated ellipse (poor fix) will have a relatively 
large flattening. 

The area A A a bπ=  (25) 

 a and b are the semi-major and semi-minor axes of the ellipse respectively.  The area of an 
error ellipse can be used as a crude measure of relative precision.  If the flattening of two 
ellipses were similar then the ellipse with the smaller area would indicate a better precision 
of position fix. 
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 Figure 6.  Area and flattening of error ellipses at four locations on a soccer field. 
 Standard deviation of bearings 1°.  Antennae at four corners A,B,C and D. 
 
Figure 6 shows error ellipses for four location of a player, (1) at the south-west corner, (2) at the 
centre of the ground, (3) at the mid-point of the northern boundary and (4) at the mid-point of the 
eastern boundary.  The flattening f and area A of the ellipses are 

 

2

2

2

2

Ellipse
1 0.84 1.2 m
2 0.28 3.2 m
3 0.52 3.8 m
4 0.59 2.7 m

f A

 

Table 1.  Flattening f and area A of the error ellipses in Figure 6 
 
The relatively large flattening for the ellipse at (1) indicates a poor position fix at the corners of the 
ground, for this configuration of antennae.  The relatively small flattening for the ellipse at (2) 
indicates a good position fix at the centre of the ground.  For the ellipses at (3) and (4), which have 
similar flattening we might conclude that the position fix at (4) is marginally better than that at (3) 
based on the areas of the ellipses. 
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An error ellipse can be computed for any position on the soccer field given the locations of the 
antennae and a grid of positions can be used to construct contour plots of error ellipse flattening.  
Figure 7 shows a contour plot of flattening derived from ellipse parameters computed at 1 metre 
intervals over the soccer field (110 × 73 = 8030 points). 
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 Figure 7.  Contour plot of error ellipse flattening for computed positions over a soccer field.  

Standard deviation of bearings 1°.  Antennae at four corners A,B,C and D. 
 
The average area of the error ellipses is 2.65 m2 and the average flattening is 0.43. 
 
A different arrangement of the four antennae is shown in Figure 8 with error ellipses at random 
locations across the soccer field.  In Figure 8 the four antennae are located at the mid-points of a 
rectangle whose sides are parallel to the field and 10 metres from the field boundaries. 
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 Figure 8.  Error ellipses at random locations of a player on a soccer field. 
 Standard deviation of bearings 1°.  Antennae on four sides. 
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 Figure 9.  Contour plot of error ellipse flattening for computed positions over a soccer field.  

Standard deviation of bearings 1°.  Antennae at four sides A,B,C and D. 
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The average area of the error ellipses is 1.41 m2 and the average flattening is 0.53. 
Another arrangement of eight antennae is shown in Figure 10 where the antennae are located 
equidistantly along the sides of a rectangle whose sides are parallel to the field and 10 metres from 
the field boundaries. 
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 Figure 10.  Contour plot of error ellipse flattening for computed positions over a soccer field.  

Standard deviation of bearings 1°.  Antennae in pairs along four sides. 
 
The average area of the error ellipses is 0.59 m2 and the average flattening is 0.32. 
 
Another arrangement of twelve antennae is shown in Figure 11.  Eight antennae are located 
equidistantly along the sides of a rectangle whose sides are parallel to the field and 10 metres from 
the field boundaries and four antennae are located at the corners. 
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 Figure 11.  Contour plot of error ellipse flattening for computed positions over a soccer field.  

Standard deviation of bearings 1°.  Twelve antennae in pairs along four sides and at the 
corners. 

 
The average area of the error ellipses is 0.43 m2 and the average flattening is 0.21. 
 
This arrangement (12 antennae) has the smallest average area and average flattening of the error 
ellipses over the soccer field.  A tabulation of antennae arrangements is shown in Table 2. 
 
Number of 
antennae 

Arrangement 
of antennae 

Contour plot 
 

Average area of 
error ellipses (m2) 

Average flattening of 
error ellipses 

4 corners Figure 7 2.65 0.43 
4 sides Figure 9 1.41 0.53 
8 sides Figure 10 0.59 0.32 
12 sides + corners Figure 11 0.43 0.21 

 
Table 2.  Antennae arrangements and average areas and flattening of error ellipses. 

 
 
PRECISION OF DIRECTIONAL ANTENNAE BEARINGS FOR DESIRED ATHLETE 
PRECISION FIX 
 
Suppose that it is desired to fix the position of the athlete on the soccer field to ±1 m in horizontal 
position.  What precision is required for the directional antennae bearings to the player? 
 
This question can only be answered if the number and arrangement of antennae is known.  From the 
previous contour plots of error ellipse flattening (see Table 2) it appears that 12 antennae (8 along 
sides and 4 at the corners of a bounding rectangle) gives the smallest average error ellipse  
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flattening.  This could be regarded as the beast of the four antennae arrangements investigated.  
Each of these four arrangements assumed a precision (standard deviation) of measured bearings of 
1°.  If the standard deviation was increased to 5° the average area of the error ellipses (computed at 
1 metre intervals over the field, 8030 locations) increases to 10.83 m2 with the average flattening 
remaining unchanged at 0.21.  Since the area if the ellipse is a bπ , then .  If the ellipses 
were regarded as approximately circular then the radius of these circles would be  which 
may be regarded as a crude estimate of the precision of the position fix if the precision of the 
antennae bearings were 5°.  For the 8030 computed athlete positions, the mean of the estimated 
standard deviations of east coordinates was 1.92 m and the mean of the estimated standard 
deviations of the north coordinates was 1.83 m.  This indicates that our crude position estimate 
±1.86 m derived from the average area of the ellipses is reasonable.  Table 3 shows values for the 
12 antennae arrangement. 

3.45a b =
1.86 mr =

 
St. Dev. of bearing Average area of 

error ellipse (m2) 
Circular position 

precision r 
Average St. Dev 

of East coord. 
Average St. Dev. 
of North coord. 

1° 0.43 0.37 0.38 0.37 
2° 1.73 0.74 0.77 0.73 
3° 3.90 1.11 1.15 1.10 
4° 6.93 1.49 1.54 1.47 
5° 10.83 1.86 1.92 1.83 

 
Table 3.  Precision of position fix for 12 antennae arrangement. 

 
From Table 3 we may conclude that for the 12 antennae arrangement, the bearings to the athlete 
would have to have a precision of 3° to achieve an average precision of ±1 m in the athlete's 
position. 
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